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ACCURACY ASSESSMENT OF ARTICULATED INDUSTRIAL ROBOTS USING 

THE EXTENDED- AND THE LOADED-DOUBLE-BALL-BAR 

This research paper outlines the methodology and application of geometric and static accuracy assessment  

of articulated industrial robots using the Extended Double Ball Bar (EDBB) as well as the Loaded Double Ball 

Bar (LDBB). In a first experiment, the EDBB is used to assess the geometric accuracy of a Comau NJ-130 robot. 

Advanced measuring trajectories are investigated that regard poses or axes configurations, which maximize  

the error influences of individual robot components, and, in this manner, increase the sensitivity for a large number  

of individual error parameters. The developed error-sensitive trajectories are validated in experimental studies and 

compared to the circular trajectories according to ISO 203-4. Next, the LDBB is used to assess an ABB IRB6700 

manipulator under quasi-static loads of up to 600 Newton using circular testing according to ISO 230-4.  

The stiffness is identified from the loaded circular trajectories. Then, the stiffness is used to perform a reverse 

calculation to identify the kinematic errors on the path deviations. The concept is validated in a case study of quasi-

static loaded circular testing using the LDBB compared to a Leica AT960 laser tracker (LT). 

1. INTRODUCTION 

Today, the demand for industrial robots is significant, as shown by their market volume 

of approximately 13.2 billion USD in 2020, and continuously increasing in the future [1]. 

Already, industrial robots can realize numerous industrial applications, especially in handling, 

while providing modern manufacturing environments with the flexibility to adapt to smaller 

lot sizes at the same time. However, new applications, such as machining, as well as a wider 

usage of offline programming require a higher positioning accuracy of industrial robots [2]. 

The improvement of positioning and path positioning accuracy [3], as a measure for  

the distance between the commanded and the attained position of a manipulator, is subject to 
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the study of manipulator calibration [4], whereby an essential step of manipulator calibration 

is the accuracy assessment by measurements. In this context, measurement is the multi-level 

process of experimentally obtaining end-effector poses (defined as combined position and 

orientation [3]) that can be used to identify and implement model parameters for the optimised 

operation of the industrial manipulator. The most important aspects of the measurement 

procedure are the ability to measure unconstrained arbitrary trajectories as well as the measu-

rement instrument itself. Hereby, the error sources of the pose deviation can be classified into 

geometric or kinematic errors, elasto-static errors, and thermal errors. 

First, geometric or kinematic calibration focuses on the deviation of the pose of the end-

effector as a consequence of the imperfect geometries of the components, the assembly, or 

the configurations regarding the Denavit Hartenberg (DH) parameters without further 

consideration of solid mechanics in terms of forces and torques, or thermodynamics in terms 

of heat affecting the mechanical structure [5]. In general, depending on the specific scenario 

of machine evaluation, such as machine comparison, quality acceptance assessment, or 

machine diagnostics, different efforts and financial costs are acceptable [6]. For this reason, 

many measurement instruments and approaches focusing on kinematic calibration with 

different accuracies and cost have been studied since the beginning of geometric error 

evaluation. 

The benchmark measurement instrument for kinematic manipulator calibration are laser 

trackers, also called tracking laser interferometers. These were invented in the 1980s and are 

now commercially and widely available [7]. They are widely accepted, as they are accurate, 

i.e., the uncertainty associated with the measurement is often less than 1/10 of the 

manipulator's repeatability. They are versatile, i.e., they offer to perform simple static point 

measurements to continuous pose measurement at commonly 1000 Hz. Finally, laser trackers 

are user-friendly, i.e., the latest version can be easily transported and setup. Nevertheless, 

their high cost with a price of approximately 130 000 € and the lack to perform calibration on 

the site of the customer have inspired research for complementary measurement instruments. 

Alternative measuring systems are based on specific reference artefacts, such as ball 

plates, precision spheres, or cross grids, that are evaluated by linear gauges, touch probes, or 

grid encoders [6]. However, these methods are limited to single poses or axes, require 

significant installation efforts, and are expensive when regarding the precision reference 

artefacts. Contact based measurement instruments that do not significantly constrain  

the trajectory are for example the CompuGauge by Dynalog [8] or the LaserTracer MT by 

Etalon [9]. Measurement instruments that constrain the trajectory but are non-contact based 

are interferometers [10], and, finally, measurement instruments that do not constrain the 

trajec-tory and are non-contact based can be found in photogrammetry systems [11] or 

LaserTracers. Then other measurement instruments, such as the conventional Double Ball 

Bar (DBB), can be used for contact-based measurement of constrained trajectories [12]. 

However, due to the limited measuring range of commonly ±1.5 mm [13], the trajectory is 

limited to a circle or a sphere.  

The DBB concept has also been developed in notable works such as the Laser Ball Bar 

(LBB) by Ziegert and Mize [14] to measure positioning accuracy through the application  

of trilateration or as well as the the High Precision Telescopic Instrument (HPTI) by Brosed 

et al. [15]. 
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The Extended Double Ball Bar (EDBB) is, as the DBB, a length measuring system  

that measures the distance between two balls, whereby one ball is fixed to the base by  

a magnetic 3-point-fixture and the other ball is moved by the robot. As no ideal machine 

exists, the difference between the nominal and the actual ball distance contains the motion 

error of the robot in 6 degrees of freedom (DOF), which is projected to a one-dimensional 

subspace by the length measurement. The EDBB can be considered as a conventional DBB 

regarding the measurement concept, the measurement instrument price in the range of 5 000 

to10 000 €, and the ease of use. However, since its measuring range is up to 220 mm, it does 

not constrain the trajectory significantly. To achieve a wide range with high accuracy,  

the EDBB consists of a linear measuring system with incremental encoder and contactless 

optical sensor that is mounted on a linear miniature guide within an invar steel and carbon 

housing, Fig. 1. Based on a scale of 20 µm, by 50 times interpolation and 4 times evaluation 

a resolu-tion of 0.1 µm and accuracy of 1 µm is realised [6].  

 

Fig. 1. Extended Double Ball Bars with different measuring range, developed at the TU Dresden [6, 16, 17] 

Next, the measurement of elasto-static errors, as pose deviations due to the compliance 

of the robot and its components, shall be discussed. In order to evaluate the compliance of the 

robot and its components, the deviation of the end-effector pose must be measured in load 

situations. One main approach is to apply a known mass to the robot and compare deviation 

measurements without and with mass to eliminate geometric error components. By tempe-

rature sensing and repeated DBB measurements with fixed measuring periods for each load 

situation, also thermal effects can be eliminated [18]. Another approach is to apply the force 

by the measuring system itself, as realised here and described below. A summary of further 

instruments and approaches is given in the work of Garnier et al. [19]. 

The Loaded Double Ball Bar (LDBB) is a tool for quasi-static loaded circular testing  

of machine tools and industrial manipulators based on a one dimensional deflection 

measurement introduced by [20]. The LDBB has a pneumatic actuator inbuilt to regulate  

the magnitude of force applied, Fig. 2. When pressurized air is injected into the instrument's 

cylinder, a mechanical force is generated, which causes the deflection of the mechanical 

structure [21]. Static load and distance between the tool and table ball are measured at the 

same time by a pressure sensor and a single linear variable differential transformer, 

respectively [22]. 



J.A. Marwitz et al/Journal of Machine Engineering, 2022, Vol. 22, No. 2, 80–98  83 

 

 

Fig. 2. Loaded Double Ball Bar for loaded circular testing, developed at KTH Stockholm [21, 23] 

 This research work identifies limitations and disadvantages of measurement instruments 

for industrial manipulator calibration, and it supports developments towards new measure-

ment instruments to overcome. In that the manuscript highlights the potential of contact based 

unconstrained measurement for the identification of kinematic and compliance errors. 

However, there is still no such device. This article scrutinises the measu-rement instruments 

for the contact based unconstrained measurement for the assess-ment of kinematic errors 

(EDBB), and the contact based constrained measurement for the assessment of compliance 

errors (LDBB), to propose a measurement instrument for the identification of kinematic and 

compliance errors. The EDBB and LDBB are the subject of this investigation, as both 

measurement instruments are similar to the DBB, i.e., the measurement procedures are fast, 

simple, and robust. This accretion is based on the assump-tion that there are more industrial 

practitioners with proficiency in ball bar testing, rather than optical or laser-based measure-

ment procedures. 
This contribution is structured in the following way: First, the methodology is presented 

for a measurement with the EDBB and the LDBB (Section 2). For the EDBB with its complex 

measuring path this includes the implementation of the kinematic model, a sensitivity 

analysis, and the path generation. As the LDBB moves along a circular path due to its limited 

range, path preparation is much simpler in this case. Next, the experimental setup is presented 

for both, the EDBB and the LDBB, with different robots (Section 3) and, finally, the measu-

ring results are evaluated (Section 4). 

2. METHODOLOGY 

2.1. GEOMETRIC ERROR EVALUATION WITH THE EDBB 

Geometric errors on serial manipulators can be caused by assembly and manufacturing 

tolerances, as well as by axis zero position errors due to incorrect mastering. In order to make 

the various error influences on the deflection of the manipulator’s end-effector visible,  

a kinematic model of the manipulator and the measurement setup is used for a sensitivity 

analysis. This is latter on referred to the kinematic measurement model. 
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On this basis, a trajectory can be generated. By filtering a global set of poses with respect 

to error sensitivity, collision freedom, working space limits of the EDBB and constraints 

caused by the wiring harness, the optimal poses as well as the necessary number of poses are 

determined. These are then rearranged to generate the shortest possible trajectory in terms  

of travel time. First, the measurement model for the sensitivity analysis is described, followed 

by the trajectory generation. 

2.1.1. KINEMATIC MEASUREMENT MODEL 

For the sensitivity analysis, an equation is required that describes the length of the EDBB 

as a function of the joint angles 𝐪 and the geometric parameters 𝐩 of all elements in the 

structural loop. This equation results from the concatenation of parameter-dependent 

homogeneous transformation matrices, Fig.: 

1. the forward transformation from the base frame {b} to the flange frame {fl} 

𝐓𝑓𝑙
𝑏 (𝐪, 𝐩𝐷𝐻) as a function of 6 joint angles q and 24 standard DH-parameters pDH 

[24],  

2. the transformation 𝐓𝑚𝑎𝑝
𝑓𝑙

(x, y, z) from the flange frame {fl} to the measurement 

application point {map}, respectively, as a function of displacement (3 parameters), 

3. and the transformation 𝐓𝑏
𝑓𝑖𝑥

(x, y, z) from the EDBB fixture frame {fix} to the base 

frame {b} of the manipulator, as a function of the displacement (3 parameters). 

These three matrices can be used to express the distance between the {map}- and the 

{fix}-frame, which is measured by the EDBB. 

 

Fig. 3. Transformations of the kinematic measurement model 

The nonlinear multidimensional target function of the measured variable depending on 

30 geometric model parameters and six joint angles results as follows: 
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𝐓𝑚𝑎𝑝

𝑓𝑖𝑥 (𝐪, 𝐩) = [ 𝐑
𝑓𝑖𝑥

𝑚𝑎𝑝 𝐭
𝑓𝑖𝑥

𝑚𝑎𝑝

𝟎 1
] = 𝐓𝑏

𝑓𝑖𝑥
𝐓𝑓𝑙 𝐓𝑚𝑎𝑝

𝑓𝑙𝑏 . (1) 

 L = 𝑓(𝐪, 𝐩) = ‖ 𝐭
𝑓𝑖𝑥

𝑚𝑎𝑝‖
2
 (2) 

To quantify the sensitivity of the model parameters p on the measurement result for a 

given set of joint angles 𝐪𝟎, the objective function can be linearized around the assumed 

model parameters 𝐩𝟎 by neglecting higher order error terms: 

 L̃ = 𝑓(𝐪𝟎, 𝐩𝟎) +
𝜕𝑓(𝐪𝟎,𝐩)

𝜕p1
∆p1 + ⋯ +

𝜕𝑓(𝐪𝟎,𝐩)

𝜕pn
∆pn. (3) 

The influence of the geometric perturbations on the measurement result can thus be 

described as follows: 

 ∆m = L̃ − 𝑓(𝐪𝟎, 𝐩𝟎) = 𝛁𝑓(𝐪𝟎, 𝐩)∆𝐩 = 𝐣∆𝐩, (4) 

where ∆m denotes the error between measured and computed EDBB length, ∆𝐩 is a column 

vector describing the perturbations of the parameters of the kinematic measurement model 

𝚫𝒑 = [𝛿𝜃1 ⋯ 𝛿𝛼6], and 𝐣 is a row vector describing the amplification of the perturbations. 

The relationship could be derived either analytically or numerically by using approaches such 

as finite difference and algorithmic differentiation [17]. 

Information from different measurements in different joint angle sets 𝐪0 … 𝐪n is 

collected and combined by stacking n equations into a matrix form: 

 ∆𝐦 = 𝐉∆𝐩, (5) 

where the matrix 𝐉 ∈ ℝ𝒏×𝒎 names identification Jacobian in literature [23]. 

2.1.2. PARAMETER ANALYSIS 

Table 1 shows the nominal DH parameters of the Comau NJ-130 manipulator used for 

the sensitivity analysis. The values 𝜃𝑖 are to be interpreted as joint angle offsets, whereas the 

joint angles are represented by the vector 𝐪. The scaling of the input vectors 𝐪 and 𝐩 was 

neglected, since radian and meter are comparable for this current robot size and geometrical 

modelling [25, 26]. The Comau NJ-130 manipulator used for the evaluation belongs to this 

category. 

Table 1. Nominal DH-parameters according to [24] of the Comau NJ-130 manipulator 

𝑖  𝛼𝑖0 [rad] 𝑎𝑖0 [m] 𝑑𝑖0 [m] 𝜃𝑖0 [rad] 

1 − 𝜋 2⁄  0.4 0.55 0 

2 − 𝜋 2⁄  0.86 0 − 𝜋 2⁄  

3 − 𝜋 2⁄  −0.21 0 𝜋 

4 − 𝜋 2⁄  0 0.76158 𝜋 

5 0 0 0 0 

6 0 0 0.21 − 𝜋 2⁄  

file:///C:/Users/Ryszard/Downloads/Path%23_CTVL0014651887527f149b2a22532841ce50843
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Before using the identification Jacobian for sensitivity analysis, all linearly dependent 

parameters and all parameters whose change has none or only little influence on the measure-

ment result must be set to a fixed value. For this objective, the QR decomposition or the 

singular value decomposition (SVD) of the identification Jacobian can be used [26]. By using 

SVD for the specific model, eight redundant or negligible parameters were identified. Eqn. 

(6) shows the full model parameter vector before eliminating the dependencies. 

 𝐩 = [xfix, 𝑦𝑓𝑖𝑥 , 𝑧𝑓𝑖𝑥 , 𝛼1, … , 𝛼6 , 𝑎1, … , 𝑎6, 𝑑1 … , 𝑑6 , 𝜃1 … , 𝜃6, 𝑥𝑚𝑎𝑝, 𝑦
𝑚𝑎𝑝

, 𝑧𝑚𝑎𝑝] , (6) 

The following parameters have been set to fixed values: 

1. The three translational parameters to describe the MAP (𝑥𝑚𝑎𝑝, 𝑦𝑚𝑎𝑝 , 𝑧𝑚𝑎𝑝), which are 

linearly dependent to the DH parameters of the last link (𝛼6, 𝑎6, 𝑑6).  

2. The three translational parameters to describe the fixture (xfix, 𝑦𝑓𝑖𝑥 , 𝑧𝑓𝑖𝑥), which are 

not part of the manipulator.  

3. The DH-parameters d2 and d3 are linearly dependent because the joint 2 and 3 are 

arranged in parallel (Fig. 3).  

4. The joint angle offset Θ6, as only position information regarding the MAP is 

recorded by means of the EDBB. These can be described in only three parameters, 

in this case 𝛼6, 𝑎6 and 𝑑6.  

The target function Eq. (2) is thus reduced from 30 to 22 geometric model parameters. 

In order to evaluate the quality of pose sets with respect to the amplification of geometric 

errors, a criterion is required. In the field of robot calibration, the observability index is used 

for this purpose. It characterizes the sensitivity of constraint equations to variation in the 

kinematic parameters [27]. The identification Jacobian, Eq. (5), is a function of the measu-

rement configuration for a particular set of poses, hence optimization of its observability index 

𝑂(𝐉) results in higher sensitivity with respect to kinematic perturbations ∆𝐩 in the observation 

∆𝐦 [27]. 

There are different approaches to determine the observability index, Table 2, which 

describe different quality criteria. Basically, two criteria are to be fulfilled [17]: 

1. The kinematic perturbations ∆𝐩 should be amplified as strong as possible on the 

observer ∆𝐦 to suppress non-kinematic effects. 

2. The kinematic perturbations ∆𝐩 should be amplified equally in all dimensions on the 

observer ∆𝐦 for the effects to be represented identically in the measurement. 

Table 2. Observability indices, 𝝁𝟏 ⋯ 𝝁𝒓 are the singular values of the identification Jacobian 𝐉, which represent  

the semiaxes of a hyper ellipsoid [25, 26] 

Index Expression Name Description 

𝑂1 
√𝜇1 ⋯ 𝜇𝑟
𝑟

√𝑃
→ 𝑚𝑎𝑥 

The Product of Singular 

Values 

Represents the volume of a hyper ellipsoid 

𝑃 is the number of poses. 

𝑂2 

𝜇1

𝜇𝑟

→ 𝑚𝑖𝑛 The Condition Number Measures the eccentricity of the hyper ellipsoid. 

𝑂3 
𝜇𝑟 → 𝑚𝑎𝑥 The Minimum Singular 

Value 

Measures the size of the minimum axis of the hyper 

ellipsoid. 

𝑂4 
𝜇𝑟

2

𝜇1

→ 𝑚𝑎𝑥 
The Noise Amplification 

Index 

Measures both the eccentricity of the ellipse through 

𝑂2as well as the size of the ellipse through 𝑂4. 
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Ruiqing et. all have shown in [17] that the use of the condition number of the 

identification Jacobian as observability index best satisfies the two criteria. Therefore, 𝑂2 

(Table 2) is applied for the sensitivity analysis in the trajectory generation. 

2.1.3. PATH GENERATION 

For the automatic generation of optimal measurement trajectories, several steps are 

necessary which will be explained in the following. Initially, some configurations must be 

prepared. First, the kinematic model of individual manipulators needs to be defined, which 

includes the nominal DH parameters (according toTable 1), as well as the MAP (displacement 

between fixture and flange). This is necessary for the sake of the sensitivity analysis and the 

pose generation by means of forward transformation from the joint angles (minimal 

coordinates). Next, the measurement space for the trajectory must be determined, by 

specifying the position of the stationary fixture, the EDBB length and the EDBB measurement 

range. This results in a workspace in the shape of a spherical shell which is arranged relative 

to the manipulator. Optimally, the joint angle space should be constrained to the measurement 

space to reduce the computation time during pose generation. Since the joint angles represent 

the minimal coordinates, which means they are independent of each other and not redundant, 

uniformly distributed configurations are generated within the joint space and transferred into 

the task space by forward transformation. The distribution step size must be defined as  

a compromise between computation time and resolution of the discretization. 

This initially large set of equidistant axis angle configurations is transformed to the task 

space and then filtered for all poses outside the measurement space, poses that cause a colli-

sion between manipulator, tool, cables, environment or EDBB placement. Figure 4a shows 

approximately 3400 valid poses in the EDBB measurement space. The number of poses is 

based on a heuristic approach which trades time and quality based on the acceptable 

computational cost in the sensitivity analysis. 

 
(a) 

 
(b) 

Fig. 4. Initial pose set – (a), final pose set – (b) 
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To analyse the sensitivity of a set of poses, the identification Jacobian, cf. Eq. (5), is 

calculated numerically. The central difference quotient with a step size of 1/3 of the computer 

accuracy is used (ℎ = 1/3 𝜀). If 𝑛 is the number of poses and 𝑚 the number of observed error 

effects, the identification Jacobian has the dimension 𝐉 ∈ ℝ𝒏×𝒎. Iteratively, poses are sorted 

out which lead a worse observability index (𝑂2: condition number) and thus to a poor 

sensitivity with respect to the kinematic perturbations. This is repeated until the number  

of poses is reduced to the number of parameters (𝑛 = 𝑚). Figura 5 shows the progression  

of the condition of 𝐉 over a portion of the number of poses. For the individual test carrier 

Comau NJ-130, it can be seen that an optimum number of poses is reached at approx. 35. For 

the trajectory generation, however, it has proven to be useful to use a large number of poses 

to reduce the collisions caused by joint interpolation (Fig. 4b). 

 

Fig. 5. Condition of orthogonalized Jacobi matrix optimized with iterative algorithm 

Finally, for the generation of the measurement trajectory, the determined sensitive set 

of poses should be rearranged with respect to the travel time. As described in [17], this 

optimization task can be described as a traveling salesman problem (TSP). For this purpose, 

a cost matrix must be created that quantifies the effort required to move between the indivi-

dual poses of the complete set. Different from [15] where the length of a path between two 

cartesian positions is applied, the movement time of the slowest axis in a joint movement 

estimated by means of the following time optimal criterion is used: 

The vector 𝐪𝐢 represents start joint positions, the vector 𝐪𝐣 represents of end joint 

positions and the vector 𝝎 represents of maximal joint speeds. This work used the established 

concord TSP [28] solver, which is considered to be particularly fast. By rearranging the poses 

using TSP, the estimated time could be reduced from about 240 s to about 22 s (cf. Fig. 6). 

After the optimal sequence of poses has been found, a joint interpolation between  

the axis configurations is performed. A new analysis is carried out to determine whether  

the interpolation would cause workspace violations, collisions, or damage to the wiring. To 

eliminate these problems, new support poses are automatically inserted into the trajectory. 

Finally, the generated measurement trajectory is slightly blended in task space by 10 mm in 

order to achieve a faster measurement movement, a more consistent speed and to avoid jerk. 

To provide the trajectory to the robot controller, G-code is generated. Figure 7 shows the 

specific error-sensitive measurement path on the Comau NJ-130 test carrier. 

 𝑐𝑖𝑗(𝐪𝐢, 𝐪𝐣) = max
𝑛=1,…,6

|𝑞𝑖𝑛−𝑞𝑗𝑛|

𝜔𝑛
, 𝑛 ∈ ℕ . (7) 
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(a) 

 
(b) 

Fig. 6. Joint position trajectories over estimated time: (a) for unsorted poses, (b) for sorted poses 

 

Fig. 7. Visualisation of an error-sensitive trajectory on the Comau NJ-130 

2.2. COMPLIANCE ERROR EVALUATION WITH THE LDBB 

The procedure measures quasi-static deflections, i.e., deflections of the manipulator’s 

end-effector under movement along a circular trajectory [29]. The conceptual measurement 

setup is delineated in Fig. 8. The robot is programmed to move along a single circular 

trajectory. 

The first metrology loop uses a linear variable differential transfomer (LVDT) inside 

the LDBB for the deflection measurement [30]. The second metrology loop uses the LT.  

The LT measurement data serve as a reference standard for the validation of the LVDT data. 

 r
ad
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The transformation of the LT data into the robot base coordinate system (RBCS) is based on 

the circle point method [4]. The transformation of the LDBB data into the RBCS is based on 

the procedure described in [31]. For both, the static and the quasi-static measurement, multiple 

force components were exerted simultaneously. This approach differs from the description  

of circular testing according to ISO 230-4. Thus, the Z-axis component’s magnitude was 

chosen to be approx. 1/3 of the total load, while the remaining 2/3 were split between the X- 

and Y-axis components (Fig. 8). The contribution of the X- and Y-axis components depended 

on the position of the LDBB along the circular trajectory. 

All measurements with the LDBB feature a mechanical base load reference (MBLR), 

i.e., the compliance based deflections are not derived as the difference between an unloaded 

and a loaded configuration but as the difference of a loaded configuration with respect to 

another loaded configuration. This approach can also be considered as a pre-loading of the 

components in the force loop. This action is meant to reduce errors in the measurement 

resulting from play or backlash and minimise the instrument uncertainty. 

 

Fig. 8. Conceptual scheme for the quasi-static loaded circular testing measurement setup: 1) large-sized articulated 

industrial robot, 2) a Leica AT901-LR LT (represented through the 0.5 in spherical retroreflector), 3) the measurement 

instrument LDBB, 4) rigid table link, and 5) an end-effector with the tool centre point 

3. EXPERIMENTS 

3.1. GEOMETRIC ERROR EVALUATION 

The experimental measurement setup is delineated in Fig. 9 and consists of the 

following components: 

1. Serial articulated industrial robot Comau NJ-130, payload 130 kg and reach 2.05 m, 

with a B&R controller and integrated CNC core (not included in the picture), 

2. Measurement instrument Extended Double Ball Bar (EDBB) [6] with a measuring 

range of 220 mm and an accuracy of 1 µm, 

3. Fixture with adjustable zero point from Renishaw. 

End-effector with measurement application point. The fixture is approx. at a position 

𝑃 = [258 1468 708]𝑇 mm within the RBCS. Initially, the robot is moved to this position 

with its MAP and the zero point is adjusted with the help of a calibration ball on the fixture. 

XY

Z
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Fig. 9. Measurement setup for the geometric error evaluation 

Firstly, the robot is programmed to move along a bidirectional circular trajectory in  

the XY-plane and bidirectional half circular trajectory in the XZ- and YZ-plane. The diameter 

of the circle is approximately 700 mm. The trajectory can be seen as an extended circular test 

according to DIN ISO 230-4. Secondly, the robot is programmed to move along the automa-

tically generated error-sensitive trajectory. 

The task space velocity is set to 1000 mm/min for both the circular trajectory and  

the error-sensitive trajectory to suppress non-geometric error influences as far as possible. All 

joint angles are recorded synchronously with the deflection of the EDBB. The sampling time 

corresponds to 2 ms, whereby all values are provided with a time stamp accurate to 50 µs. 

The joint angles are linearly interpolated to the time stamp of the EDBB. 

3.2. COMPLIANCE ERROR EVALUATION 

The experimental measurement setup is delineated in Fig. 10. The robot is programmed 

to move along a single circular trajectory with a diameter of approximately 250 mm, which 

is centred at a position 𝑃 = [1350 −125 1250]𝑇 within the RBCS. The setup is depicted 

in Fig. 10 and it comprises the following equipment: 

1. Serial articulated industrial robot, payload 300 kg and reach 2.7 m, with its corres-

pondding controller (not included in the picture), 

2. Leica AT901-LR Laser Tracker (LT) (not included in the picture) with a 0.5 in 

Spherically Mounted Retroreflector (SMR), 

3. Measurement instrument Loaded Double Ball Bar (LDBB) [32] with a co-axially 

installed DTA-3G8-3-CA LVDT 

4. Rigid table link, 

5. End-effector with tool centre point. 
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Fig. 10. Measurement setup for the compliance error evaluation. The figure does not correctly depict the position  

of the circle 

The deflection measurements are performed with two different metrology loops [33]. 

The first metrology loop uses an LVDT for the deflection measurement. The second 

metrology loop uses the LT. The LT measurement data serve as a reference standard for the 

validation of the LVDT data. The distance between the MAPs, also called points of interest, 

of the LVDT and the LT equals approximately 6 mm. Figure 10 shows the MAPs of the LT 

as 𝑴𝑨𝑷𝟏 and the of the LVDT as 𝑴𝑨𝑷𝟐. 

The quasi-static loaded circular measurement procedure induces loads of 125 N, 250 N, 

375 N, 500 N, and 625 N along a single circular trajectory. Then, the manipulator moves two 

times clockwise about the same circular trajectory, see Fig. 10. The circles were measured 

with an angular overshoot of 180° to exclude transient effects from the measurement data. 

The manipulator followed the trajectory with a Cartesian velocity of 50 mms-1. The LT and 

the LVDT are set to continuous data recording at 1,000 Hz, which dissected the circle into 

15,899 measurement points. The points are spaced at a distance of approximately 50 µm along 

the circumference of the circle. This minimises errors in the data analysis. This will be further 

discussed in the results section. 

4. RESULTS 

4.1. GEOMETRIC ERROR EVALUATION 

Figure 11 shows the EDBB distance for the extended circular test (a) and for the error-

sensitive trajectory (b) in red. The extended circle test uses 2.45 mm of the measuring range 

of the EDBB, which nearly exceeds the measuring range of a conventional DBB of approx. 

±1.5 mm [13]. The error-sensitive trajectory uses 156.32 mm of the measuring range.  

The measurement time for the error-sensitive trajectory is approximately twice that of the 

extended circular test. Overall, the traversing speed could be increased significantly and thus 

the measurement duration shortened considerably. In order to suppress non-geometric error 

influences as far as possible, a relatively slow speed was deliberately chosen here (cf.  

Section 3.1).  

Y

Z

X

Y

Z

X
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In addition to the measured distance (red), the calculated deflection based on the joint 

angle setpoints is shown in green and the calculated deflection based on the actual joint angle 

values is shown in blue. It can be noticed that a deviation of up to 0.5 mm in the EDBB 

deflection occurs due to the contouring error.  

 
(a) 

 
(b) 

Fig. 11. Calculated and measured distance of the MAP to the stationary EDBB fixture: (a) extended circular test 

according to DIN ISO 230-4, (b) error sensitive generated trajectory 

 In order to make the two trajectories comparable and to suppress the deviation of the 

deflection due to the contouring error, the deviation between the calculated (based on  

the actual axis values, blue) and measured distance is shown in Fig. 12. It is visible that  

the extended circularity test leads to a deviation in the range of 2.36 mm. In comparison, with 

the error-sensitive trajectory, a deviation of approx. 3.5 times is observed, in a range  

of 8.28 mm. 

 
(a) 

 
(b) 

Fig. 12. Deviation between calculated and measured EDBB distance: (a) extended circular test according to DIN ISO 

230–4, (b) error sensitive generated trajectory 

This shows that a trajectory sensitive to geometric error influences which uses a large 

measuring range of the EDBB reflects the kinematic perturbations much better. With regard 

to the method presented in Section 2.1 for the automatic generation of trajectories, it is 

therefore possible to represent the path accuracy of industrial robots more correctly. This 
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creates the possibility for a quick, cost-efficient and simple evaluation of accuracy on the 

ready to run industrial robot with the help of the EDBB. In future work, kinematic calibration 

of industrial robots can be investigated on this basis. 

4.2. COMPLIANCE ERROR EVALUATION 

The evaluation of the compliance error is based on the relative difference between the 

loaded trajectories. First, one identifies the compliance induced deflections from the raw data 

according to: 

Here 𝑖 ∈ ℕ1𝑥15899 denotes the index of the points along the trajectory and 𝑗 ∈ ℕ1𝑥5 

denotes the magnitudes of the applied mechanical loads. The raw data can be seen in Fig. 13 

(a) and represents the average of five repeated measurements. The resulting differences Δx𝑖,𝑘 

are defined as the deflections at the 𝑘 apparent load (AL) of 125 N, 250 N, 375 N, and 500 N. 

In that context an AL of 125 N indicates that considered difference is calculated as  

the difference of two circular trajectories that have a nominal load difference of 125 N, e.g., 

the circular trajectory at 250 N with respect to the one at 125 N. The force induced deflections 

at the different ALs can be seen in Fig. 13 (b). 

 
(a) 

 
(b) 

Fig. 13. Measurement data from the LDBB: (a) measurement raw data, (b) compliance induced deflections along  

the circular trajectory 

Then the force induced deflections are subtracted from the trajectories to obtain  

the compliance compensated trajectories, which can be seen in Fig. 14 (a). Dependent on the 

linearity of the compliance one would expect all measurement data to ideally coincide on the 

same line. However, this is not exactly true for this case study, see Fig. 14 (a). The maximum 

difference between all trajectories equals approx. 180 µm. Then, the average compliance 

compensated trajectory can be calculated from the individual trajectories, see Fig. 14 (b). 

 Δx𝑖,𝑘 = Δx𝑖,𝑗=[250𝑁:125𝑁:625𝑁] − Δx𝑖,𝑗=125𝑁 (8) 



J.A. Marwitz et al/Journal of Machine Engineering, 2022, Vol. 22, No. 2, 80–98  95 

 

 
(a) 

 
(b) 

Fig. 14. Compliance compensated trajectories at the Als – (a), the averaged compliance compensated trajectory – (b) 

Finally, it is noticeable that the average compliance compensated trajectory is dominated 

by an error that takes the shape of a trigonometric function. The majority of this error depends 

on the offset between the circle centre and the table link, i.e., the centring procedure, and there 

are minor error components resulting from the eccentricity of the spheres themselves.  

The offset of the circle can be corrected for using a non-linear least-square approximation  

of a sinusoidal function, here denoted as sin (𝑎, 𝑏, 𝜑), according to: 

The identification uses an initial guess of 𝑎 = 0.8 mm for the amplitude, 𝑏 = 1 for the 

frequency, and 𝜑 = 22.5 deg for the phase shift. The non-linear least squares fitting identifies 

the following parameters for the case study: of 𝑎 = 0.764 mm for the amplitude, 𝑏 = 0.933 

for the frequency, and 𝜑 = 14.08 deg.  

Then, the backward calculated kinematic error can be computed as the difference 

between the averaged compliance compensated trajectory and the function sin (𝑎, 𝑏, 𝜑).  

The result of this calculation can be seen in Fig. 15. 

 

Fig. 15. Compliance and offset compensated average trajectory of the LVDT data compared to an unloaded trajectory 

measured with a laser tracker, i.e., the kinematic reference error 

 ‖𝑎 ∗ sin(𝑏𝜃 − 𝜑) − �̅�(𝜃)𝑚𝑒𝑎𝑠‖2.  (9) 
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The average difference between the calculated data from the LDBB and the pure 

kinematic error measurement from the laser tracker equals approximately 40 µm. As can be 

seen from the average difference as well as the trend in Fig. 15, after compensating the 

measured deflections for the compliance as well as the offset of the circle centre, the resulting 

data yields indicative information about the kinematics of the industrial manipulator.  

The remaining 40 µm difference is small under the consideration that the error has not been 

measured at the same MAP. Furthermore, it needs to be highlighted that to obtain the kine-

matic data no additional information is required, as the data have been backwards calculated 

from the compliance trajectories. Nevertheless, it is not certain that this will always be  

the case, as a majority of the error depends on the centring of the circle and there can be 

scenarios in which the non-linear least-squares fit may result in an erroneous identification, 

for example if the initial guess is misleading. 

5. CONCLUSION 

The improvement of the accuracy of industrial robots is one of the main challenges 

limiting the widespread application of offline programming. This article presented the metho-

dology and application of geometric and static accuracy assessment of serial articulated 

industrial robots using the Extended Double Ball Bar (EDBB) as well as the Loaded Double 

Ball Bar (LDBB). Two case studies assessed the geometric accuracy of a Comau NJ-130 

robot and the elasto-geometric accuracy of an ABB IRB6700 manipulator using the EDBB 

and the LDBB.  

The experimental results highlighted that both, the geometric and the compliance, errors 

can be decisive for the successful implementation of industrial robots. The results indicated 

that a measurement instrument, which can simultaneously measure arbitrary trajectories for 

geometric and compliance errors, may provide industrial practitioners with added value to 

their industrial manipulators. Industrial practitioners can assess their manipulators perfor-

mance in a fast and robust manner, while the data might be used to perform elasto-geometric 

calibration of the manipulators model parameters. Thus, for the investigated case studies, by 

identifying the kinematic and quasi-static error it is plausible to achieve a significant and 

reliable compensation that is more suitable for industrial implementation and potential 

inclusion by manufacturers of manipulators. 

Further research will explore the applicability of such a measurement instrument which 

may have a considerable impact on positioning accuracy. This in turn can lead to added value 

through off-line and on-line compensation. 
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